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Abstract

The three-dimensional steady-state basic equations of thermoelasticity for a transversely isotropic elastic medium are

simplified by introducing two displacement functions. Using the operator theory, a static general solution is obtained,

which is expressed in terms of four quasi-harmonic functions. Potential theory method is extended to account for the

thermal effect for crack problems. Exact and complete fundamental solution is derived for the problem of a penny-

shaped crack subjected to a point-temperature load, arbitrarily acting on the crack surface. This is completely new to

the literature. In the case of uniform-temperature load, exact expressions are also obtained for the three-dimensional

thermoelastic field. Comparison with the existent results shows a good agreement. All expressions of the thermoelastic

field in the full space are obtained in terms of elementary functions, which can facilitate their further usage.

� 2003 Elsevier Ltd. All rights reserved.

Keywords: Transversely isotropic; Thermoelastic general solution; Potential theory method; Penny-shaped crack
1. Introduction

The study of thermoelastic problems has always been an important branch in solid mechanics (Nowacki,

1962; Nowinski, 1978). In particular, the thermoelastic fracture problems subjected to various types of

thermal boundary conditions have been discussed extensively in the literature (Sih, 1962; Wilson and Yu,

1979; Prasad et al., 1994; Georgiadis et al., 1998; Kotousov, 2002). As regards the steady-state problem of

penny-shaped crack in isotropic elastic media, most analytical works treated the axisymmetric case, for

which Hankel transform technique and the theory of dual integral equations were usually employed

(Sneddon and Lowengrub, 1969; Kassir and Sih, 1975). Shail (1964) proposed a different solution
method by virtue of a general solution with zero shear stress on the crack plane. The general solution is

expressed by two harmonic functions, one of which is directly related to the temperature field. No report on
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a penny-shaped crack subjected to point-temperature load arbitrarily located at the crack surface could be

found yet in literature, although the corresponding fundamental solution can play an important role in

boundary element method (BEM) thermoelastic facture analysis.

Some metallic materials, such as zinc and magnesium, are transversely isotropic (Hermon, 1961). Many
fibrous composites may be also modeled as transversely isotropic materials (Christensen, 1979). There have

been many reports on three-dimensional analysis of transversely isotropic thermoelastic materials. Sharma

(1958) extended the method of Elliott (1948) to thermoelasticity and determined the stresses due to tem-

perature in a semi-infinite transversely isotropic solid. Singh (1960) solved a number of problems on axi-

symmetric thermal stresses in a semi-space utilizing two displacement functions. Employing the Hankel

transform method, Mehta (1966) investigated the thermal stress around a crack in an elastic solid of

transversely isotropic material, but most final expressions were given in integral form. Tsai (1983a,b) used a

similar method to study the thermal stress in a transversely isotropic medium containing a penny-shaped
crack; the expressions for normal stress and axial displacement at the plane of crack surface were explicitly

derived. Singh et al. (1987) examined the steady-state thermoelastic behavior of an external circular crack

subjected to a symmetric temperature distribution at the crack surfaces. Podil�chuk and Sokolovskii (1994)
employed a general solution for transversely isotropic elasticity to solve the steady-state problem of an

infinite medium with an internal elliptical crack by the trial-and-error method. Later, Podil�chuk and
Dobrivecher (1996a,b) considered the inclusion problem using a similar process. Noda and Ashida (1987,

1994) investigated the dynamic problems of a penny-shaped crack in a transversely isotropic infinite solid or

in a transversely isotropic cylinder. Recently, Tsai (1998, 2000) extended his earlier works (Tsai, 1983a,b) to
the flat toroidal crack case using the techniques of triple integral equations and multiplying factors.

It is noted that for transversely isotropic materials without thermal effect, Fabrikant (1989, 1991) has

successfully developed a so-called potential theory method which can be widely used in three-dimensional

analysis of crack and punch problems. The method is based on the general solution proposed by Elliott

(1948) that contains three quasi-harmonic potential functions. Exact solutions can be obtained for some

non-classical problems using this method. For example, complete expressions have been derived for the

elastic field in the full space for the problem of a transversely isotropic elastic body containing a penny-

shaped crack, which is subjected to normal or shear point load at its crack surface. Chen and Shioya (1999,
2000) and Chen (2000) extended the Fabrikant�s potential theory method to piezoelasticity and obtained
some exact solutions of crack and punch problems for piezoelectric materials. However, there is no parallel

work in the domain of thermoelasticity. This may be mainly due to the lack of a thermoelastic general

solution expressed by quasi-harmonic functions as that for purely elastic materials (Elliott, 1948).

The general solution for thermoelasticity employed by Podil�chuk and Sokolovskii (1994) involves four
potential functions, three of them are quasi-harmonic and the remainder one satisfies a differential equation

with inhomogeneous term. Ding et al. (1997) also presented a general solution of transversely isotropic

thermoelasticity, which consisted of two parts, i.e. the particular solution and the general solution. The
particular solution can be solved from the heat conduction equation and the corresponding boundary

conditions. The general part is identical to those of the purely elastic one. Either the general solution

employed by Podil�chuk and Sokolovskii (1994) or the one proposed by Ding et al. (1997) is in fact a simple
extension of that for the purely elastic one (Elliott, 1948) that the temperature field should be solved in-

dependently and a priori. Note that for transient problems, Ashida et al. (1993) proposed a general solution

technique for which the temperature field also should be solved in advance. Employing such general so-

lutions, however, we can not use many splendid results obtained by Fabrikant for transversely isotropic

elasticity (Fabrikant, 1989, 1991).
In this paper, two displacement functions are introduced to simplify the basic three-dimensional

equations of thermoelasticity with transverse isotropy for the steady-state problem. Using the operator

theory, we derive a general solution that is expressed in terms of two functions: One satisfies a quasi-

harmonic equation and the other satisfies a six-order partial differential equation. By virtue of the gener-
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alized Almansi�s theorem, the general solution is further expressed in terms of four quasi-harmonic func-
tions. The steady-state thermal stresses of a transversely isotropic material containing a penny-shaped crack

are then investigated. The problems can be turned to solve the corresponding mixed boundary-value

problems of a half space and thus the potential theory method proposed by Fabrikant (1989) is generalized
to account for the thermal effect. An integral equation and an integro-differential equation are then derived.

When the crack is subjected to point-temperature load or uniform-temperature load at its crack surface,

complete and exact expressions of the three-dimensional thermoelastic field are obtained in terms of ele-

mentary functions. For the uniform-temperature load case, comparison is made with the results obtained

by Tsai (1983a) and good agreement is obtained. It is noted that most expressions derived in the paper have

not been reported before in literature. Especially, the solution corresponding to the point-temperature load

is entirely new and can be used as fundamental solution in BEM. It also can be used to construct analytical

solution for an arbitrary temperature load at the crack surface. The stress intensity factor for a penny-
shaped crack subjected to an arbitrary temperature load is given in the paper as an example.
2. Basic equations

In Cartesian coordinates ðx; y; zÞ, the Duhamel–Neumann relations for a transversely isotropic elastic
medium with the isotropic plane parallel with the plane x–y are (Tsai, 1983a,b)
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where uðv;wÞ and riðsijÞ are components of displacement and stress, respectively; T is the temperature
change with T ¼ 0 corresponding to the free-stress state; cij and bi are elastic constants and thermal moduli,

respectively.

The temperature field in the medium in a steady-state is governed by the following equation:
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where D ¼ o2=ox2 þ o2=oy2 is the planar Laplacian, and kij are the coefficients of thermal conductivity.

The equilibrium equations in terms of displacement are shown to be
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3. Static general solution

Two displacement functions w and G are introduced as follows
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: ð4Þ
It is then obtained from Eqs. (3) and (2) that
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where D is the following operator matrix:
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and we have
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where
a0 ¼ c33c44; b0 ¼ c11c33 þ c244 � ðc13 þ c44Þ2; c0 ¼ c11c44:
The derivation presented above is similar to that described in Ding et al. (1997); the difference is that the

equation of heat conduction and the two equations governing G and w are combined together as shown in
Eq. (6). It should be noted that in almost all previous works (Ashida et al., 1993; Podil�chuk and Soko-
lovskii, 1994; Ding et al., 1997), the temperature T should be solved independently from the thermal

conduction equation, i.e. Eq. (2), which usually leads to general solutions that include a particular part
associated with the temperature.

By virtue of the operator theory, we obtain the following general solutions
G ¼ Ai1F ; w ¼ Ai2F ; T ¼ Ai3F ; ði ¼ 1; 2; 3Þ; ð9Þ
where Aij are the algebraic cominors of D, and the function F satisfies
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where zi ¼ siz, s3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k11=k33

p
, and s1 and s2 are the roots with positive real part of the following eigen-

equation
a0s4 � b0s2 þ c0 ¼ 0: ð11Þ
It can be seen that, if we take i ¼ 1 and 2 in Eq. (9), then we will get two general solutions both implying
T ¼ 0, which are actually identical to the ones without thermal effect (Elliott, 1948; Ding et al., 1997).
Taking i ¼ 3 and writing out the expressions for A3j, we obtain
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where
a1 ¼ �b1c44; b1 ¼ b3ðc13 þ c44Þ � b1c33; a2 ¼ b3c11 � b1ðc13 þ c44Þ; b2 ¼ b3c44:
In cylindrical coordinates ðr;/; zÞ, the general solution can be easily obtained. In fact, the expressions for
w and T are identical to that in Eq. (12), while those for the radial and circumferential displacements ur and
u/ are, respectively
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here D ¼ o2=or2 þ r�1o=or þ r�2o2=o/2 is the Laplacian in polar coordinates.
Using the generalized Almansi�s theorem (Ding et al., 1996), the function F can be expressed in terms of

three quasi-harmonic equations
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It is noted that only in Eq. (14) of this paper, we have not specified s3 to the value of
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sake of simplicity, we proceed to consider the case of distinct eigenvalues here and after. In this case, the
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where kij ¼ �aj þ bjs2i ðj ¼ 1; 2Þ, k33 ¼ a0s43 � b0s23 þ c0. It is now assumed that
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and writing w0 ¼ w, then Eq. (16) can be further simplified to
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where ai1 ¼ ki2si=ki1, a12 ¼ a22 ¼ 0, a32 ¼ k33=k31, and
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In cylindrical coordinates ðr;/; zÞ, the expressions for w and T are still given as in Eq. (18), while those
for the radial and circumferential displacements are, respectively
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In order to generalize the potential theory method proposed by Fabrikant (1989) to the case of thermo-
elasticity, we introduce the following complex quantities
U ¼ u þ iv; r1 ¼ rx þ ry ; r2 ¼ rx � ry þ 2isxy ; sz ¼ sxz þ isyz:
We then obtain that
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where K ¼ o=ox þ io=ox, and

ci1 ¼ c13 þ c33siai1 � b3ai2; c2i ¼ 2½ðc11 � c66Þ þ c13siai1 � b1ai2	; ci3 ¼ �c44si þ c44ai1:
It can be verified that ci1si ¼ ci3.
4. Generalized potential theory method for thermoelastic crack problem

Consider an infinite transversely isotropic elastic body containing a penny-shaped crack of radius a. The
crack is located in the plane z ¼ 0, which is parallel with the isotropic plane. The cylindrical coordinate
system ðr;/; zÞ is adopted with the origin at the center of the crack. It is assumed that the crack is subjected
to an arbitrarily distributed temperature Hðr;/Þ at the crack surface. Using the symmetric condition, the
problem can be turned to a mixed boundary-value problem of a half space z P 0 with the following con-

ditions at the surface z ¼ 0 (Sneddon and Lowengrub, 1969; Tsai, 1983a):
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Extending the potential theory method (Fabrikant, 1989) to thermoelasticity, it is assumed that
w0 ¼ 0; wiðzÞ ¼ hi1H1ðziÞ þ hi2H2ðziÞ; ði ¼ 1; 2; 3Þ; ð23Þ

where hi1 and hi2 are undetermined constants, and
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where S is the crack domain 06 r6 a, x and # are the crack surface displacement wðr;/; 0Þ and temper-
ature gradient oT ðr;/; zÞ=ozjz¼0, respectively, RðM ;NÞ is the distance between the two points Mðr;/; zÞ and
Nðq; h; 0Þ, and N 2 S. As compared with the potential theory method for pure elasticity, a new potential H2
has been introduced here to account for the thermal effect. To satisfy the zero-shear stress condition at
z ¼ 0, we take
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Then from Eqs. (18), (23) and (26) as well as the second condition in Eq. (22), we obtain
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where dij is the Kronecker delta. To meet the first condition in Eq. (22) demands
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N0, N 2 S. By virtue of Eq. (30), Eq. (29) can be rewritten as
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It can be seen that Eq. (31) is similar to the governing equation for crack problem in elasticity while Eq. (30)

is similar to the one for punch problem in elasticity (Fabrikant, 1989).

The solutions to Eqs. (31) and (30) can be obtained by directly using Fabrikant�s results (Fabrikant,
1989)
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Substituting Eq. (32) into the first equation in Eq. (24) gives
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where the so-called Green�s function Kðr;/; z; r0;/0Þ has been obtained by Fabrikant (1989) as follows:
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Here Rð�; �Þ denotes the distance between respective points: Mðr;/; zÞ, Nðq; h; 0Þ and N0ðr0;/0; 0Þ. The de-
rivative of H1 with respect to z can be obtained from Eq. (35),
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various derivatives of the Green�s function K can also be found in Fabrikant (1989) and are listed in

Appendix A for the reader�s convenience.
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where the Green�s function Pðr;/; z; r0;/0Þ has been obtained by Fabrikant (1989) for elastic contact
problems as follows:
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r20 � 2rr0 cosð/ � /0Þ þ z2

p
.

5. Exact thermoelastic fundamental solution

In the following, we divide the thermoelastic field into two parts. The first part corresponds to the

potential H1, and the second part corresponds to another potential H2, as shown in Eq. (23). For a penny-
shaped crack subjected to a point-temperature load T ¼ H0 at an arbitrary point ðr0;/0; 0Þ, the thermal
load at the right-hand side of Eq. (31) can be seen as a generalized point mechanical force. Thus the ex-
pressions of the thermoelastic field of the first part can be obtained by directly employing the results in

Fabrikant (1989), except for the coefficients, as follows:
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U ð1Þ ¼ � 2s3g12
pg11

X3
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i¼1

ai1hi1f2ðziÞH0;

rð1Þ
z ¼ 2s3g12

pg11

X3
i¼1

ci1hi1f3ðziÞH0; rð1Þ
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X3
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ð40Þ
where fiðzÞ are given in Appendix A.
We can not write out immediately the expressions of the thermoelastic field of the second part by directly

citing the results in Fabrikant (1989). From Eq. (38), the expression for H2 can be written as
H2 ¼ � 2s3
p

Z 2p

0

Z a

0

Wðr;/; z; r0;/0ÞHðr0;/0Þr0 dr0 d/0; ð41Þ
where Wðr;/; z; r0;/0Þ ¼
R

Pðr;/; z; r0;/0Þdz. The integration of P with respect to z is very difficult to
execute. However, the derivatives of the Green�s function Pðr;/; z; r0;/0Þ have been derived by Fabrikant
(1989) and are listed in Appendix A, from which we can derive the derivates of W as follows:
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ð42Þ
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The first formula in Eq. (42) is obtained by integrating the second equation in Eq. (A.2) in Appendix A.

The involved integration is basic but tedious, and some skills such as the change of variable technique

should be employed. The detailed derivation is omitted here for simplicity, and the reader is referred to the

appendices in Fabrikant (1996) for relative formulations. The fourth formula in Eq. (42) is obtained by
direct differentiation of the first formula.

Thus, the expressions of the thermoelastic field of the second part can be obtained as follows:
U ð2Þ ¼ 2s3
p

X3
i¼1

hi2g1ðziÞH0; wð2Þ ¼ � 2s3
p

X3
i¼1

ai1hi2g2ðziÞH0;

rð2Þ
z ¼ � 2s3

p

X3
i¼1

ci1hi2g3ðziÞH0; rð2Þ
1 ¼ � 2s3

p

X3
i¼1
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rð2Þ
2 ¼ 4s3c66

p

X3
i¼1

hi2g4ðziÞH0; sð2Þz ¼ � 2s3
p

X3
i¼1

ci3hi2g5ðziÞH0;

T ð2Þ ¼ � 2s3
p

X3
i¼1

ai2hi2g3ðziÞH0;

ð43Þ
where giðzÞ are defined in Eq. (42).
The complete thermoelastic field then can be obtained by superimposing the two parts as given in Eqs.

(40) and (43). Now we can discuss the singular behavior at the crack edge of a penny-shaped crack sub-
jected to a point-temperature load arbitrarily acting on the crack surface. Noticing the following property:
z ¼ 0 : l1 ! minða; rÞ; and l2 ! maxða; rÞ; ð44Þ
we obtain
z ¼ 0; r > a : rz ¼ � 2s3g12
p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � a2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r20

p
r2 þ r20 � 2rr0 cosð/ � /0Þ

H0: ð45Þ
If the stress intensity factor is defined as
KI ¼ lim
r!a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðr � aÞ

p
rzjz¼0

n o
; ð46Þ
then we have
KI ¼ � 2s3g12ffiffiffiffiffiffi
pa

p H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r20

p
a2 þ r20 � 2ar0 cosð/ � /0Þ

: ð47Þ
At this stage, we can easily obtain the stress intensity factor for a penny-shaped crack subjected to an

arbitrarily distributed temperature Hðr;/Þ at the crack surface through integration of Eq. (47)
KI ¼ � 2s3g12ffiffiffiffiffiffi
pa

p
Z 2p

0

Z a

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r20

p
Hðr0;/0Þ

a2 þ r20 � 2ar0 cosð/ � /0Þ
r0 dr0 d/0: ð48Þ
6. Uniform-temperature load case

Now we consider the particular case of the penny-shaped crack subjected to a uniform temperature T0 at
the crack surface. Tsai (1983a) solved this problem by using Hankel transform and only derived some

expressions for the stress and displacement at z ¼ 0. In the following, we will derive the complete
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expressions of the thermoelastic field in the full space. Actually, according to Fabrikant (1989), we can

obtain the solutions to Eqs. (30) and (31) as follows:
#ðr;/Þ ¼ � 2s3T0
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p ; xðr;/Þ ¼ 2s3g12T0
pg11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2

p
: ð49Þ
It can be seen that the first equation in Eq. (49) is identical to that obtained by Tsai (1983a). The form of the

second equation in Eq. (49) is also the same as that in Tsai (1983a) except for the coefficient. Numerical

calculation for certain materials shows that our formula is identical with the one in Tsai (1983a). Substi-

tuting Eq. (49) into Eq. (24) yields (Fabrikant, 1989, 1991)
H1ðr;/; zÞ ¼
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ð2a2
�

þ 2z2 � r2Þ sin�1 a
l2

� �
� 2a

2 � 3l21
a
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Þ
�
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ð50Þ
Having obtained H1 and H2, the whole thermoelastic field can be obtained simply by differentiation:
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where
l1i ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr þ aÞ2 þ z2i

q�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � aÞ2 þ z2i

q �
; l2i ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr þ aÞ2 þ z2i

q�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � aÞ2 þ z2i

q �
:

Thus we can deduce from Eq. (51)
rzjz¼0 ¼ �4s3g12T0a
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � a2
p ; ðr > aÞ: ð52Þ
The above formula is exactly the same as that obtained by Tsai (1983a). Then the stress intensity factor can

be obtained as
KI ¼ �4s3
ffiffiffiffiffiffiffi
pa0

p
g12T0: ð53Þ
Note that this formula can also be obtained from Eq. (48) by performing the integration.
7. Conclusions

This paper derives a general solution expressed by four quasi-harmonic functions by the introduction of

two displacement functions and using the operator theory. The form of the solution is very simple in that it

does not contain a particular part related to the temperature field. It can be used to solve various kinds of

mixed boundary-value problems in thermoelasticity, such as the crack problems and punch problems.

Although a comprehensive comparison with that of Ashida et al. (1993) is not suitable because of different

problems and different ideas adopted, the derivation presented in this paper is somehow simpler and
mathematically compact while that in Ashida et al. (1993) needs some skillful techniques and pertinent

experience. It is also noted that for isotropic materials, there is a general solution expressed by harmonic

functions only (Shail, 1964; Sneddon and Lowengrub, 1969), as mentioned earlier in this paper. However,

the temperature field was also first solved by Shail (1964) and the associated harmonic function should be

obtained through integration of the temperature.

Using this general solution, the potential theory method proposed by Fabrikant (1989) is extended to

solve the problem of a penny-shaped crack subjected to temperature load in an infinite transversely iso-

tropic medium. A new potential is introduced to take the thermal effect into account. Two governing in-
tegral or integro-differential equations are derived. It is found that the structure of the integral equation is

the same as that for crack problems in elasticity and that of the integro-differential equation is identical to

that for contact problems in elasticity. Thus the results obtained by Fabrikant (1989) can be utilized di-

rectly. It should be noted that the extension of Fabrikant�s theory to thermoelasticity is not straightforward
because of the lack of a general solution like the one presented in our paper.

For the problem of a penny-shaped crack subjected to point surface temperature, complete and exact

fundamental solution of the thermoelastic field is derived. The corresponding stress intensity factor is

derived explicitly, and the one for an arbitrarily distributed temperature load is also presented. These results
are new to the literature. The thermoelastic fundamental solution can also play an important role in BEM

and defect analysis. In the case of a uniform-temperature load applied on the crack surface, complete and

exact expressions of the thermoelastic field are also derived. Most of them have not been obtained before.

Good agreement is obtained when compared with some existent formulations obtained by Tsai (1983a),

who however, only presented the expressions of stresses and displacements at the plane where the crack is

located.

Note that it is very simple and straightforward to give numerical results since we have all the expressions

in hand. The present solution method is verified by considering the uniform-temperature load case and
comparing some results with that obtained by Tsai (1983a). In addition, the point-temperature load
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solution is checked by performing the integration involved in Eq. (48) for a uniform-temperature load,

which leads to Eq. (53) that is also the same as that obtained by Tsai (1983a). From this view of point, the

correctness and validity of our method and the results are verified.

The steady-state problem of a penny-shaped crack subjected to heat flux at the crack surface (may be
non-axisymmetric) can also be solved using the present method. However, certain mathematical difficulty

will be encountered to perform the integration of new functions that have not appeared before. The work in

this respect will be reported in another paper.
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Appendix A

The various derivates of Green�s functions Kðr;/; z; r0;/0Þ and Pðr;/; z; r0;/0Þ have been derived by
Fabrikant (1989) and are listed in the following for the reader�s convenience.
(1) Derivatives of Green�s function Kðr;/; z; r0;/0Þ
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(2) Derivatives of Green�s function Pðr;/; z; r0;/0Þ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � l21

p
r2ei2/

l21ðR20 þ h2Þðl22 � l21Þ

#
;

ðA:2Þ
where 1 ¼ ðr=r0Þeið/�/0Þ.
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